UnivIS
Informationssystem der Friedrich-Alexander-Universität Erlangen-Nürnberg © Config eG 
FAU Logo
  Sammlung/Stundenplan    Modulbelegung Home  |  Rechtliches  |  Kontakt  |  Hilfe    
Suche:      Semester:   
 
 Darstellung
 
Druckansicht

 
 
Modulbeschreibung (PDF)

 
 
 Außerdem im UnivIS
 
Vorlesungs- und Modulverzeichnis nach Studiengängen

Vorlesungsverzeichnis

 
 
Veranstaltungskalender

Stellenangebote

Möbel-/Rechnerbörse

 
 
Artificial Intelligence (Master of Science) >>

Seminar Artificial Intelligence and Neuroscience (SemAINeuro)5 ECTS
(englische Bezeichnung: Seminar Artificial Intelligence and Neuroscience)
(Prüfungsordnungsmodul: Seminar Advanced Algorithms in Medical Image Processing)

Modulverantwortliche/r: Andreas Maier
Lehrende: Andreas Maier, Patrick Krauß, Joachim Hornegger


Startsemester: SS 2021Dauer: 1 SemesterTurnus: unregelmäßig
Präsenzzeit: 30 Std.Eigenstudium: 120 Std.Sprache: Englisch

Lehrveranstaltungen:


Inhalt:

Neuroscience has played a key role in the history of artificial intelligence (AI), and has been an inspiration for building human-like AI, i.e. to design AI systems that emulate human intelligence. Furthermore, transferring design and processing principles from biology to computer science promises novel solutions for contemporary challenges in the field of machine learning. This research direction is called neuroscience-inspired artificial intelligence.
In addition, neuroscience provides a vast number of methods to decipher the representational and computational principles of biological neural networks, which can in turn be used to understand artificial neural networks and help to solve the so called black box problem. This endeavour is called neuroscience 2.0 or machine behaviour.
Finally, the idea of combining artificial intelligence, in particular deep learning, and computational modelling with neuroscience and cognitive science has recently gained popularity, leading to a new research paradigm for which the term cognitive computational neuroscience has been coined. There is increasing evidence that, even though artificial neural networks lack biological plausibility, they are nevertheless well suited for modelling brain function.
The seminar will cover the most important works which provide the cornerstone knowledge to understand cutting edge research at the intersection of AI and neuroscience.

Lernziele und Kompetenzen:

Students will be able to

  • perform their own literature research on a given subject

  • independently research this subject

  • present and introduce the subject to their student peers

  • give a scientific talk in English according to international conference standards

Literatur:

Barak, O. (2017). Recurrent neural networks as versatile tools of neuroscience research. Current opinion in neurobiology, 46, 1-6.
Barrett, D. G., Morcos, A. S., & Macke, J. H. (2019). Analyzing biological and artificial neural networks: challenges with opportunities for synergy?. Current opinion in neurobiology, 55, 55-64.
Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A., & Oliva, A. (2016). Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Scientific reports, 6(1), 1-13.
Cichy, R. M., & Kaiser, D. (2019). Deep neural networks as scientific models. Trends in cognitive sciences, 23(4), 305-317.
Dasgupta, S., Stevens, C. F., & Navlakha, S. (2017). A neural algorithm for a fundamental computing problem. Science, 358(6364), 793-796.
Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95(2), 245-258.
Kriegeskorte, N., & Douglas, P. K. (2018). Cognitive computational neuroscience. Nature neuroscience, 21(9), 1148-1160.
Marblestone, A. H., Wayne, G., & Kording, K. P. (2016). Toward an integration of deep learning and neuroscience. Frontiers in computational neuroscience, 10, 94.
Nasr, K., Viswanathan, P., & Nieder, A. (2019). Number detectors spontaneously emerge in a deep neural network designed for visual object recognition. Science advances, 5(5), eaav7903.
Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J. F., Breazeal, C., ... & Wellman, M. (2019). Machine behaviour. Nature, 568(7753), 477-486.
Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature neuroscience, 19(3), 356-365.
Jonas, E., & Kording, K. P. (2017). Could a neuroscientist understand a microprocessor?. PLoS computational biology, 13(1), e1005268.


Weitere Informationen:

Schlüsselwörter: algorithms; medical image processing

Verwendbarkeit des Moduls / Einpassung in den Musterstudienplan:

  1. Artificial Intelligence (Master of Science)
    (Po-Vers. 2021s | TechFak | Artificial Intelligence (Master of Science) | Gesamtkonto | Hauptseminar | Seminar Advanced Algorithms in Medical Image Processing)
Dieses Modul ist daneben auch in den Studienfächern "Informatik (Master of Science)", "Medizintechnik (Master of Science)" verwendbar. Details

Studien-/Prüfungsleistungen:

Seminar Advanced Algorithms in Medical Image Processing (Prüfungsnummer: 76431)
Prüfungsleistung, Seminarleistung, Dauer (in Minuten): 30, benotet, 5 ECTS
Anteil an der Berechnung der Modulnote: 100.0 %
weitere Erläuterungen:
Scientific talk in English
Prüfungssprache: Englisch

Erstablegung: SS 2021, 1. Wdh.: WS 2021/2022
1. Prüfer: Andreas Maier

UnivIS ist ein Produkt der Config eG, Buckenhof