UnivIS
Informationssystem der Friedrich-Alexander-Universität Erlangen-Nürnberg © Config eG 
FAU Logo
  Sammlung/Stundenplan    Modulbelegung Home  |  Rechtliches  |  Kontakt  |  Hilfe    
Suche:      Semester:   
 
 Darstellung
 
kompakt

kurz

Druckansicht

 
 
Stundenplan

 
 
 Extras
 
alle markieren

alle Markierungen löschen

Ausgabe als XML

Expertensuche

 
 

Lehrveranstaltungssuche

 

AG Mathematics of Deep Learning

Dozentinnen/Dozenten:
Daniel Tenbrinck, Leon Bungert
Angaben:
Arbeitsgemeinschaft, ECTS: 5
Termine:
Mi, 14:00 - 16:00, H13
Studienrichtungen / Studienfächer:
WF M-MA ab 1
WF TM-MA ab 1
WF WM-MA ab 1
WF CAM-MA-MApA ab 1
WF CAM-MA-NASi ab 1
WF CAM-MA-Opti ab 1

 

Deep Learning [DL]

Dozent/in:
Andreas Maier
Angaben:
Vorlesung, 2 SWS, ECTS: 2,5, nur Fachstudium, Information regarding the online teaching will be added to the studon course
Termine:
Di, 12:15 - 13:45, H4
Studienrichtungen / Studienfächer:
WPF INF-MA ab 1
WPF MT-MA-BDV 1
Voraussetzungen / Organisatorisches:
The following lectures are recommended:
  • Introduction to Pattern Recognition (IntroPR)

  • Pattern Recognition (PR)

Application via https://www.studon.fau.de/crs3317670.html

Inhalt:
Deep Learning (DL) has attracted much interest in a wide range of applications such as image recognition, speech recognition and artificial intelligence, both from academia and industry. This lecture introduces the core elements of neural networks and deep learning, it comprises:
  • (multilayer) perceptron, backpropagation, fully connected neural networks

  • loss functions and optimization strategies

  • convolutional neural networks (CNNs)

  • activation functions

  • regularization strategies

  • common practices for training and evaluating neural networks

  • visualization of networks and results

  • common architectures, such as LeNet, Alexnet, VGG, GoogleNet

  • recurrent neural networks (RNN, TBPTT, LSTM, GRU)

  • deep reinforcement learning

  • unsupervised learning (autoencoder, RBM, DBM, VAE)

  • generative adversarial networks (GANs)

  • weakly supervised learning

  • applications of deep learning (segmentation, object detection, speech recognition, ...)

The accompanying exercises will provide a deeper understanding of the workings and architecture of neural networks.

Empfohlene Literatur:
  • Ian Goodfellow, Yoshua Bengio, Aaron Courville: Deep Learning. MIT Press, 2016
  • Christopher Bishop: Pattern Recognition and Machine Learning, Springer Verlag, Heidelberg, 2006

  • Yann LeCun, Yoshua Bengio, Geoffrey Hinton: Deep learning. Nature 521, 436–444 (28 May 2015)

Schlagwörter:
deep learning; machine learning

 

Deep Learning Exercises [DL E]

Dozentinnen/Dozenten:
Katharina Breininger, Florian Thamm, Felix Denzinger
Angaben:
Übung, 2 SWS, ECTS: 2,5, nur Fachstudium, This course will be held online until the coronavirus pandemic is contained to such an extent that the Bavarian state government can allow face-to-face teaching again. Information regarding the online teaching will be added to the studon course
Studienrichtungen / Studienfächer:
WPF INF-MA ab 1
Schlagwörter:
deep learning; machine learning

 
 
Mo12:00 - 14:000.01-142 CIP  Breininger, K.
Schröter, H.
 
 
 
Di18:00 - 20:000.01-142 CIP  Breininger, K.
Schröter, H.
 
 
 
Mi16:00 - 18:000.01-142 CIP  Breininger, K.
Schröter, H.
 
 
 
Do14:00 - 16:000.01-142 CIP  Breininger, K.
Schröter, H.
 
 
 
Fr8:00 - 10:000.01-142 CIP  Breininger, K.
Vesal, S.
Schröter, H.
 
 

Seminar Deep Learning Theory & Applications [SemDL]

Dozentinnen/Dozenten:
Vincent Christlein, Stefan Evert, Ronak Kosti
Angaben:
Seminar, 4 SWS, benoteter Schein, ECTS: 5, nur Fachstudium, Information regarding the online teaching will be added to the studon course
Termine:
Mi, 10:15 - 11:45, 01.019
Studienrichtungen / Studienfächer:
WPF INF-MA 1
WPF MT-MA-BDV 1
WPF CE-MA-TA-MT 1
Inhalt:
Deep Neural Networks or so-called deep learning has attracted significant attention in the recent years. They have had a transformative influence on Natural Language Processing (NLP) and Artificial Intelligence (AI), with numerous success stories recent claims of superhuman learning performance in certain tasks. According to Young et al. (2017), more than 70% of the papers presented at recent NLP conferences made use of deep learning techniques. Interestingly, the concept of Neural Networks inspired researchers already over generations since Minky's famous book (cf. http://en.wikipedia.org/wiki/Society_of_Mind ). Yet again, this technology brings researchers to the believe that Neural Networks will eventually be able to learn everything (cf. http://www.ted.com/talks/jeremy_howard_the_wonderful_and_terrifying_implications_of_computers_that_can_learn ).

This year's main topic is: "Multi-Task Learning for Document Analysis", i.e. we will analyze Documents of different nature (text, images, etc.) by means of multi-task learning using different techniques, such as Natural Language Processing, Handwriting recognition, etc.

Empfohlene Literatur:
  • Representation Learning: A Review and New Perspectives, Yoshua Bengio, Aaron Courville, Pascal Vincent, Arxiv, 2012.
  • Deep Learning, Yoshua Bengio, Ian Goodfellow, Aaron Courville, MIT Press

  • Goldberg, Yoav (2017). Neural Network Methods for Natural Language Processing. Number 37 in Synthesis Lectures on Human Language Technologies. Morgan & Claypool.

  • Young, Tom; Hazarika, Devamanyu; Poria, Soujanya; Cambria, Erik (2017). Recent trends in deep learning based natural language processing. CoRR, abs/1708.02709. http://arxiv.org/abs/1708.02709

  • Gradient-Based Learning Applied to Document Recognition, Yann Lecun, 1998

  • Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al. 2014

  • Greedy layer-wise training of deep networks, Bengio, Yoshua, et al. Advances in neural information processing systems 19 (2007): 153.

  • Reducing the dimensionality of data with neural networks, Hinton et al. Science 313.5786 (2006): 504-507.

  • Training Deep and Recurrent Neural Networks with Hessian-Free Optimization, James Martens and Ilya Sutskever, Neural Networks: Tricks of the Trade, 2012.

  • Deep Boltzmann machines, Hinton et al.

  • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, Pascal Vincent et al.

  • A fast learning algorithm for deep belief nets, Hinton et al., 2006

  • ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, NIPS 2012

  • Regularization of Neural Networks using DropConnect, Wan et al., ICML

  • OverFeat: Integrated recognition, localization and detection using convolutional networks. Computing Research Repository, abs/1312.6229, 2013.

  • http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial

  • http://deeplearning.net/tutorial/

  • Deep Learning Course on Coursera by Hinton

  • DL platform with GPU support: caffe, lasagne, torch etc.

  • Stanford University CS 224: Deep Learning for NLP (http://cs224d.stanford.edu )

  • University of Oxford: Deep Natural Language Processing (https://github.com/oxford-cs-deepnlp-2017/lectures )

Schlagwörter:
deep learning; neural networks; machine learning; pattern recognition; natural language processing






Suchmodus:

Umlaute können auch in der Ersatzdarstellung eingegeben werden.

UnivIS ist ein Produkt der Config eG, Buckenhof