UnivIS
Informationssystem der Friedrich-Alexander-Universität Erlangen-Nürnberg © Config eG 
FAU Logo
  Sammlung/Stundenplan    Modulbelegung Home  |  Rechtliches  |  Kontakt  |  Hilfe    
Suche:      Semester:   
 
 Darstellung
 
Druckansicht

 
 
 Außerdem im UnivIS
 
Vorlesungs- und Modulverzeichnis nach Studiengängen

Vorlesungsverzeichnis

 
 
Veranstaltungskalender

Stellenangebote

Möbel-/Rechnerbörse

 
 

Music Processing Analysis (MPA)

Verantwortliche/Verantwortlicher
N.N.

Angaben
Vorlesung
2 SWS, benoteter Schein, Kredit: 2/2, ECTS-Studium, ECTS-Credits: 2,5
für Gasthörer zugelassen, Sprache Englisch

Studienfächer / Studienrichtungen
WPF INF-MA 1-4
WF WING-MA 1-4
WPF CME-MA ab 1
WF SIM-DH 6-10
WF SIM-MA 1-4
WF WING-DH 6-10
WPF EEI-MA-INT ab 1
WPF EEI-BA-INT 5-6
WPF IuK-MA 1-4
WF IuK-MA-MMS-EEI 1-4

Empfohlene Literatur
http://www.music-processing.de
http://www.springer.com/gp/book/9783319219448

ECTS-Informationen:
Title:
Music Processing Analysis

Credits: 2,5

Prerequisites
In this course, we discuss a number of current research problems in music processing or music information retrieval (MIR) covering aspects from information science and digital signal processing. We provide the necessary background information and give numerous motivating examples so that no specialized knowledge is required. However, the students should have a solid mathematical background. The lecture is accompanied by readings from textbooks or the research literature. Furthermore, the students are required to experiment with the presented algorithms using MATLAB.

Contents
Music signals possess specific acoustic and structural characteristics that are not shared by spoken language or audio signals from other domains. In fact, many music analysis tasks only become feasible by exploiting suitable music-specific assumptions. In this course, we study feature design principles that have been applied to music signals to account for the music-specific aspects. In particular, we discuss various musically expressive feature representations that refer to musical dimensions such as harmony, rhythm, timbre, or melody. Furthermore, we highlight the practical and musical relevance of these feature representations in the context of current music analysis and retrieval tasks. Here, our general goal is to show how the development of music-specific signal processing techniques is of fundamental importance for tackling otherwise infeasible music analysis problems.

The following video gives a brief impression about this course: http://www.youtube.com/watch?v=iY243jku0UA

Literature
Meinard Müller
Fundamentals of Music Processing
http://www.music-processing.de
http://www.springer.com/gp/book/9783319219448

Zusätzliche Informationen
Schlagwörter: Audio, Music, Signal Processing, Fourier Transform, Feature Design, Fingerprinting, Beat Tracking, Music Information Retrieval, AudioLabs
Erwartete Teilnehmerzahl: 15, Maximale Teilnehmerzahl: 30
www: http://www.youtube.com/watch?v=iY243jku0UA

Verwendung in folgenden UnivIS-Modulen
Startsemester WS 2015/2016:
Music Processing Analysis (MPA)
Music Processing Analysis - Lecture & Exercise (MPA-LE)

Institution: International Audio Laboratories Erlangen (AudioLabs)
Kurse
    
Mo  16:00 - 18:00  3R4.04
Meinard Müller
UnivIS ist ein Produkt der Config eG, Buckenhof